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ABSTRACT. The Multiscale Hybrid-Mixed (MHM) method is a multiscale
finite element method based on a hybrid weak formulation, originally pro-
posed for problems linked to flow in porous media. Its starting point is a
variational formulation that guarantees that the flux variable is H (div;§2)-
conforming. This property is lost when the local problems, in their elliptic
form, are discretized using primal finite element methods. In this work,
we close that gap by proposing and analyzing a new flux reconstruction
for the MHM method, computed element-wise on submeshes, that belongs
to H(div; Q). The reconstruction converges optimally in the L?(£2)—norm.
Furthermore, the divergence of the reconstructed flow is the piecewise con-
tinuous polynomial projection of the source term onto submeshes and thus
it also converges optimally in the L?(£2)—mnorm. As a by-product of the
reconstruction technique, a fully computable a posteriori error estimator is
presented and analyzed. These theoretical results are validated experimen-
tally via numerical computations.

1. INTRODUCTION

Multiscale finite element methods have seen significant advancements in
recent decades, both theoretically and practically. They are known to be ac-
curate without resolving fine scales through multiscale functions computed
from decoupled problems which take advantage of massively parallel comput-
ers efficiently. Since the seminal work [7], there has been vast literature on the
subject. In the context of the Darcy model (or Poisson equation), several alter-
natives have been proposed over the last two decades, such as the VMS method
[33], MsFEM and GMsFEM [21], the PGEM and GEM |8, 28|, the HMM [1],
Multiscale Mortar method [6], the LOD method [38] and the LSD method
[37], just to cite a few (see, e.g., [36] for a recent review). This work focuses
on the Multiscale Hybrid-Mixed (MHM for short) method [31, 4]. The MHM
method is a by-product of a hybrid formulation that starts at the continuous
level posed on a coarse partition of the domain. It consists of decomposing
the exact solution into local and global contributions. When discretized, such
a characterization decouples local and global problems: the global formula-
tion involves only degrees of freedom over the skeleton of the coarse partition,
while the local problems provide the multiscale basis functions. Interestingly,
the multiscale basis functions can be computed locally through independent
problems. Local problems can be solved using primal finite element methods,
as in [30, 9], or using mixed methods such as in [20].

The choice of method is guided by the physical quantities of interest. Fluxes
and stresses often constitute the primary variables of interest in various ap-
plications, including heat conduction, percolation in porous media, and stress
analysis [35]. The classical way of obtaining an accurate flux for the Darcy
problem is by introducing a mixed (or hybrid) formulation and solve it using
appropriate mixed finite element methods. The use of local mixed problems in
the MHM method (see [20]) gives an accurate H (div; ©2)—conforming flux vari-
able, but incurs increased computational cost. On the other hand, using a pri-

mal finite element method as a second-level solver in the MHM method [30, 9]
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is computationally attractive, but fails to preserve the H(div;2)—conformity.
One alternative is to perform an accurate H(div;2)—conforming flow recon-
struction using the discrete solution for primal finite element methods locally.
The ability to perform such reconstruction element-wisely using the primal
discrete solution is particularly attractive from a computational standpoint
and has been proposed for standard finite element and discontinuous Galerkin
methods in [44] and [26, 25], respectively. The flux can also be post-processed
from the vertex-patch-wise approach, as detailed in works such as [11, 18, 24].
Additionally, fluxes can also be utilized in a posterior: error estimates reliant on
equilibrated fluxes for primal formulations [24]. Consequently, in applications
such as porous media flow, where o := —AVu denotes the Darcy velocity, it is
important that the flux o, in addition to being accurate, belongs to H (div; ()
(see, e.g., [17] for an example). This last requirement is of importance, on
the one hand, because the continuity of the normal components of the flux
guarantees conservation, and on the other, because the normal component of
the flux is the natural input to model the transport phenomena.

In this work we take the path where an H(div; Q)—conforming flux is built
starting from the solution of the MHM formulation as a post-processing step,
provided that the multiscale basis function are not computed exactly. We build
up on the ideas presented in [15, 17, 44], though none of them have a submesh
on the macro elements. We use local Raviart-Thomas spaces (c.f. [42]) so that
the reconstructed flux has continuous normal components in submeshes and is
conservative in each macro element, even though the reconstruction is carried
out locally in the submesh. The presence of the submeshes associated with the
skeleton of the global partition and local problems in the MHM method makes
the extension of previous strategies nontrivial, as special care needs to be taken
to guarantee the normal continuity in the interior facets of the subtriangulation
(that is, the ones that are not associated to global degrees of freedom) while
maintaining the accuracy of the original discrete solution. Due to the local
character of the reconstruction, the computational overhead is negligible, while
it produces an optimally convergent flux in the L?(2)-norm and H(div;()-
norm. In addition, thanks to the nature of the MHM method, we prove that
the divergence of the reconstructed flux in the macro element is the projection
of the right-hand side datum onto the continuous finite element space used in
the second-level computation. Hence, the projection of the divergence of the
reconstructed flux exhibits optimal convergence with respect to the local mesh
parameter. Moreover, if the submesh coincides with the coarse-scale one (i.e., a
submesh consisting of only one element), then the divergence itself converges
optimally. The vertex-patch-wise approach [40] is an alternative to achieve
local mass conservation in the submesh elements (see also [20]) at the price
of solving mixed problems on patches of elements. Such an approach leads to
p—robust error estimates (see also [14] for more general cases), a study that is
out of the scope of the present work.

As mentioned above, flux reconstructions have been linked to the develop-
ment of a posterior: error estimators. Up to our best knowledge, the first a
posteriori error estimator that used this idea was proposed in [41], and similar
ideas have been applied since then in different contexts (see [27, 12]). Par-
ticularly attractive is the a posteriori error estimation in [40] that relies on
post-processed flux and potential reconstruction from the vertex-patch-wise
approach, extending ideas from the Prager-Synge equality [41]. The estima-
tors provide guaranteed upper bounds on the energy error and are locally
efficient, while also providing lower bounds, under the assumption that the
numerical discretization satisfies a set of assumptions strongly tied to mixed
finite element methods. Unfortunately, this scope (e.g. [40, Section 3.3]) can-
not be directly used for the analysis of fully computable error estimators for
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the MHM method based on second-level primal solvers, unlike MHM methods
that rely on mixed local problems [10].

In the second part of this work, we derive a fully computable a posteriori
error estimator for the MHM method. For that, we use the recovered flux
variable of the first part of this work and the potential reconstruction using
the Oswald averaging interpolation technique combined with the technique
presented in [24]. The Oswald operator enforces continuity by averaging val-
ues across element interfaces, making it computationally efficient as it avoids
the calculation of local, or global, projections to estimate the lack of H'()-
conformity. As a result, we obtain a computable quantity that is a strict upper
bound for the discretization error of the MHM method. The estimators con-
structed in this manner are defined as the norm of the difference between the
gradient of the primal variable, multiplied by the physical coefficient, and the
reconstructed flux, as well as the norm of the difference between the gradient
of the primal variable and that derived from the reconstructed potential. In
addition, the estimators include a new term that measures the local lack of
conservation of the MHM solution on submesh elements due to the choice of
local primal finite element solvers to approximate the multiscale basis.

The proposed a posteriori estimator also provides a lower bound for the dis-
cretization error of the MHM method. The expression used as discretization
error for the lower bound has more terms than the one used for the upper
bound, which classifies the estimator as weakly efficient. Interestingly, [40]
provides a local efficient estimator for multiscale methods using patch-wise
flux reconstructions, where local Neumann problems are solved using rotated
gradients. Unfortunately, the lower bound for our proposed multiscale error
estimator and the one proposed in [40] share the shortcoming of depending
on the ratio between local and global mesh parameters. As such, construct-
ing robust estimators for multiscale methods (from the point of view of local
efficiency) remains an open problem (see also [13]).

The rest of the paper is organized as follows. In Section 2, the main no-
tations, model problem, and preliminary results are presented. The MHM
method is presented in Section 3, and the flux recovery is presented and ana-
lyzed in Section 4. In Section 5, we derive the a posteriori error estimator, and
numerical experiments validating the theoretical results are given in Section 6.
Some conclusions are drawn in Section 7, and in Appendix A we prove some
technical results needed for the error analysis.

2. SETTING AND PRELIMINARY RESULTS

This section introduces the model problem and its hybrid formulation, and
a characterization of the exact solution with respect to the solution of global-
local boundary value problems. It follows closely previous works on the MHM

method [4, 9].

2.1. Model Problem. Let Q ¢ R?, d € {2, 3}, be an open, bounded, and
connected polytope with Lipschitz boundary 99Q. Given f € L*(Q) and g €
HY2(9Q), we define the following boundary value problem: Find u € H'(Q)
such that u|sq = g and

(2.1) /AVU-Vv:/fU for all v € Hy ().
Q Q

Here, A € L>(Q)¥? is a symmetric matrix and may involve multiscale fea-
tures that will be assumed to be regular enough so its traces on the facets
of the triangulation are well-defined. We will impose more precise regularity
assumptions on it later. It is also supposed to be uniformly elliptic in 2. More
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precisely, we assume that there exist positive constants A, and Ap.x such
that

(2.2) Apmin|€]? < ETA(x)€ < Apo€* for all € € RY,

and for almost all € €2, where |-| is the Euclidian norm. The standard weak
formulation (2.1) is a well-posed problem (c.f. [23, Example 25.4]).

Above and hereafter we will adopt standard notation for Sobolev and Lebesgue
spaces aligned with, e.g., [22], where H*(D) (L?*(D) = H°(D)) stands for the
usual Sobolev spaces on an open bounded set D ¢ R?, d e {1,2,3} and s € R.
As usual, H}(D) is the space of functions in H'(D) with null trace in D. We
also denote by (-,-)p the L?(D)-inner product (we do not make a distinction
between vector-valued and scalar-valued functions), i.e.,

(f79>D:/ng'

Finally, the product (,-),, denotes the duality pairing between H~'/2(9D)

and HY/2(OD). Also, || - ||ls.p and | - |s.p are the usual norm and semi-norm in
H*(D), for every integer s > 1.
The dual variable associated to (2.1) is o := —AVu, what we hereafter

denote by flux. In a distributional sense, the flux satisfies the equation V-0 = f
in €2, which could be seen as an alternative formulation for the model problem.
Due to the assumptions on u, A and f, the flux o belongs to H(div; (), the
space of functions in L?()¢ with divergence in L?(€2).

2.2. Hybridization. Following closely the presentation in [9], we start intro-
ducing &2, a collection of closed, bounded, disjoint polytopes, K, such that
Q) = UkgerK. The shapes of the polytopes K are, a priori, arbitrary, but
we suppose that they satisfy a minimal angle condition (see Assumption A,
Subsection 3.1, for a more precise statement). The diameter of K is Hy and
we denote H = maxges Hy. For each K € &2, n denotes the unit outward
normal to 0K, such that n® = n on 9Q where, n is the unit outward normal
to 0£2. We also introduce 042 as the set of boundaries 0K, £ the set of the
faces in &, and & the set of internal faces. By ng, we denote a unit normal
vector on faces F € &, and n& the unit outward normal vector on E with
respect to K.

Now, given a partition & of Q, for m > 1 we define the broken Sobolev
space

H™P) :={v:v|x € H"K),VK € 2} with norm [[v]|2, 5 = > [Jv[l2,x,
Kez

and we denote the respective semi-norm by |- |, . In addition, the following
spaces will be useful in what follows

V.=H' (),
Voi={veV vk ePy(K) forall K € Z},

where Py(K') stands for the space of constants functions in K,
Vi={veV :vgeH(K)NLYK), K € &},

where LZ(K) represents the subspace of L*(K) consisting of functions with
zero mean value in K. In addition, we define

A:={1 -n"|ox : T € H(div;Q) for all K € &} .
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Over the spaces V and A we define the respective norms
(2.3)

1/2
1 .
HUHV:{Z d—2\|vué,K+\|w|raK} and [y :=_nf el
Ke>

TEH (div;Q2
@ T-ni:,u on 0K
where dg, > 0 is the diameter of Q and H(div;Q) := {7 € L*(Q)? : V-7 €
L*(Q)} with norm

1/2
(2.4) 17 {|aiv, 0 = { S TGk +dallv - TII%,K} :
Ke

Let [v] represent the jump of v on E € &, i.e., for two elements K and K’
sharing F/, we define

and [[v] :=v on E C 09. We assume that there is an orientation of the inner
edges so that (2.5) is uniquely defined. This orientation is arbitrary and does
not impact the results. We also define {v}, the average value of v on E € &,
as

(2.6) {U} = %(’U’K—FU‘K/),

where K, K" are neighboring elements and on £ C 09, {v} := v. We define
the broken products on & and 042 as

(2.7) (v, W)z = Z (v,w)g and  (u,v)sp = Z (1, 0) oy -

Kew Kez
We recall from [29] that

1,0) 55
(2.8) lalla = sup YoVloz

for all p e A.
vev  lvllv

We also define the following norm over the space L*(0.2)

1/2
(2.9) [l = (Z %KHM”(Q),(?K) :

Kew

We are ready to present a hybrid formulation for (2.1). Here we relax the
continuity of u on the skeleton 042 by introducing the Lagrange multiplier A.
The hybrid formulation reads: Find (A, u) € A x V such that

{(AVU, Vu)e — (N v)ap = (f,v)e foralveV,

2.10
(210) (1, u)oz = (11, g)an  for all € A.

Observe that (2.10) is a saddle point problem wherein the exact solution
u is sought in a space V larger than H'(2). Nonetheless, the introduction
of the Lagrange multiplier A € A, which ensures the weak continuity of u on
2, leads u to belong to H'(2) and to satisfy the original formulation (2.1).
These results were proved originally in [42] and extended in [9] to more general
partitions &2,

2.3. A characterization of the exact solution. The exact solution of (2.1)
can be characterized in terms of the solution to local and global problems.
Following closely [4], we define the bounded mappings 7 € L(A, V) and T €
L(L*(Q),V) as follows

o forall pe A, Tulx € V is the unique solution of

(2.11) / AVT Vo = (u,0)g forallveV VK € 2;
K
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e for all ¢ € L2(Q2), Tq|x € V is the unique solution of
(2.12) /Av%q-wz/qv foralveV,VK € 2.
K K

Hence, the solution of (2.1) can be written as
(2.13) u=uy+TA+TF,

where (A, u,) € A x Vj solves the following mixed problem

(2.14) (1, TN oz + {11, ug)az = — (1, 7'f>a,@ + (i, g)aq forall pe A,
' N vg)ow = —(f,v9) 2 for all v, € V.

The well-posedness of (2.14) was proved in [4, Section 3.1] for the partition
of Q into simplicial elements, and [9, Theorem 2.1] for more general cases.

3. THE MHM METHOD

This section presents the MHM method. Next, we introduce some notation
needed to define the method in general polytopal meshes.

3.1. Settings. The MHM method uses a multi-level discretization starting
from the first-level partition &?. Notably, each face £ € & and polytopal
element K € & may carry its own family of partitions in a way that each
member is a priori independent of each other [29]. We start discretizing the
set of faces £ € £. For this, let {€x} ., be a family of partitions of £, for
which each /' € £ is split into faces F' of diameter Hp < H := maxpeg, Hr.
We call £X the collection of faces F' € £ such that F' C K.

Assumption A: For each K € &2, there exists {Eg} 1o & shape-regular family
of conforming simplicial partitions of K matching with {£} -, i.e., for each
F € EF there exists an element k € 2% such that 9k NOK = F.

In addition, for each K € &, we introduce a shape regular family of sim-
plicial triangulations {Z,%},_, made up of simplices T € ZKX of diameter
hp < h = maxgep maxpe zx hy (see Figure 1 for an illustration in two-

dimensions). In each element K € &2 the mesh 7% will be assumed to be a
regular refinement of the triangulation Z%. Let FF denote the set of all facets
of 7K, and FI* C F the set of facets internal to K. For § C 9T, h; denotes
its diameter. We note that every f C 07 N JK is included in one, and only
one F' € &x.

For k,¢ > 0 we define the following finite element spaces associated to &
and Z%

(3.1) Ay =Apy €N pylp €PUF), VF € &y},

(3.2) V= T Vi),
Ke>»

(3.3) V, =[] Vi(K) where V,(K) := Vii(K)n L§(K),
Ke>»

where

(3.4)  VFHE) :={v, € COK) : vy|lp € P(T), VT € FX}, for k>1,

and V2(K) := Py(K).
Now, we introduce local projections onto more general piecewise polynomial
spaces. For K € &, m > 0, we introduce the operator Iy, : L'(K) —
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F1GURE 1. A polytopal domain & discretized with conforming
elements K (upper left). The mesh £y is defined over the skele-
ton of & (upper center). Zp is a simplicial mesh (upper right)
that matches €y. A minimal (bottom left) and a refined (bottom
right) submesh in element K and a simplex 7' (bottom center).
The black dots represent the degrees of freedom associated with
=g and the red dots with the mesh skeleton.

V(K such that

(3.5) / My, (w)v = / wv  for allv e V;"(K),
K K

and the global projection Ilg,,(-) such that Ig (- )|K = HKm(~). Also, we
define, for T € .Z}, the operator I, : L'(T)* = P, (T)? a

(3.6) /HTvm(w) v = / w- v forallv € P, (T)".
T T

In addition, for F' € €, we define the projection operator Il : L'(F) —
P .(F) such that,

(3.7) [ el = [ ne tor e o),

and the global projection operator Il () as Il¢ . (-)|p = Il (+).

3.2. The MHM method. Using the finite element spaces defined in (3.1)-

(3.3), the discrete equivalents of the mappings 7 and 7 defined in (2.11)-(2.12)
read

o for all € A, T, €V, is the unique solution of

(3.8) / AVT -V, = (p,v,)orx  for all v, € V,(K) and K € 2;
K
e for all ¢ € L?(Q2), T,q € V, is the unique solution of

(3.9) / AVT,q- Vv, :/ qu, forallv, € V,(K) and K € 2.
K K

Using the discrete mappings (3.8)-(3.9), the discrete version of the problem
(2.14) is: Find (Ag,ul) € Ay x Vj such that
(3.10)
<MH7771)‘H>8W + <:uH7ug>ay = _<MH7 771f>8? + <NJH’ g>aQ for all By € AHa
(At v0)om = —(f1v0) » for all v, € V.
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The approximate solution is given by
(3.11) Ugpy, = Ul + Trde + Thf .

For the well-posedness of the MHM method, see [9, Theorem 2] for the two-
dimensional case and [29, Theorem 4.4] for the three-dimensional case adapting
it to the Darcy model.

Next, we present a prior: error estimates for the MHM method. Hereafter,
we denote by C' a positive constant independent of mesh sizes, which may

depend on physical coefficients A, Amax and also on polynomial degrees ¢
and k.

Theorem 3.1. Let us assume that u, solution of the hybrid formulation, be-
longs to H**1(2?) and AVu € HY(P)NH(div; Q), with £ > 0 and k > (+d.
Then, there exists C' such that

luo — ugllv + 1A = Aulla < C (F*lulysr o + HTHAVU|p11,5) -
In addition, the following error estimate holds for wy, as given in (3.11)
lu = ugyllv < C (B*lulypr 00 + HFAVUle11,2) -
Proof. For details, see [9, Theorem 3]. U

The simplest choice to approximate the exact flux & = —AVu is to adopt
—AVuy,, where uy;, corresponds to the MHM solution obtained using a primal
finite element method for local problems. However, —AVu,, is not necessarily
in H(div;{2), since its normal component over E € & differs from A,. Fur-
thermore, —AVuy, is not locally conservative. The approximated normal flow
A, in contrast, belongs to the desirable space A, C A and satisfies a locally
conservative condition via (3.10). These reasons motivate the post-processing
technique we present in the next section.

4. POST-PROCESSING FOR THE DUAL VARIABLE FOR THE MHM

To develop the flux recovery strategy from the solution of the MHM method
(3.10), we use subspaces of finite dimension of H(div;2). Among the most
renowned approximation spaces in the literature for H (div; () are the Raviart-
Thomas spaces. In this section, we propose to construct a o) in a way that
its normal component is continuous on the interelement boundary, i.e., o), €
H(div; Q), through the definition of new local problems.

4.1. The Raviart-Thomas space. Following [19, Section 3] we will build a
Raviart-Thomas space in the submesh Z%.

First, we introduce the local spaces. Given a simplex T C RY, the local
Raviart-Thomas space of order m > 0 is defined by

(4.1) RT,,(T) =P, (T) +xP, (T).
The respective Raviart-Thomas local interpolation operator is defined as
(4.2) T H(T) — RT,,(T),

with s > 1/2, where, for v € H*(T), W?T'”’U € RT,,(T) is the only element
of the local Raviart-Thomas space satisfying

(4.3) l(ﬂ?va-ng)uzl(v-ng)u forall ueP, (f,),i=1---,d+1,

and, if m > 1,

(4.4) / 7T7T€Tm'v T = / v-1r forall T€P, (7).
T T
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The Raviart-Thomas interpolation has an optimal-order error estimate, namely,
there exist constants C' depending on m, d, and the regularity constant of the
mesh such that, for any v € H™(T)4,

(4.5) v — ZIETWUHO,T <C hg“n+1|'v|m+1,T7
v =77 ™llgar < Ch?+l/2’v|m+l,T'

Associated with 7K we introduce the global space over K € &2

(4.6) RT, (7K)={v e H(div;K) : v|r € RT, (T), VT € F*}.

An essential tool in error analysis is the operator

T m o H(diviK)n [ HY(T) = RT,(F5).

TegK
with s > 1/2, defined by
(4.7) Tyl =1y forall T € ZK.

As a consequence of its definition, the operator WKT’” satisfies

/ V-(v—w?T’”v)q:O,
K
for all v € H(div; K) N HTeth H(T)* and all ¢ € {g € L*(K) : g|r €
P,.(T), VT € ZX}, for every K € 2. Moreover,
V- -RT,(F5)={g€ L*(K) : glr € P,,(T), VT € FX}.

Also, in [22, Example 12.6], the following stability is proven: There exists
C > 0, independent of H, H, and h such that,

(48) ol <€ (1T @l + 152 max o il ) Vo € RT(D),

where TL;., () is defined in (3.6) with m > 1.

4.2. Flux Recovery. In this section we present the construction of the post-
processed flux. Once the solution (Agy,uy,) of the MHM method (3.10) is
computed, we construct o, € RT,(T) on each T € F5, ¢ > 0, as follows:
(4.9)

/(O'h M) = /—{AVuHh} FMy L for all u € Py(f), if f € FENnoT,
f f

/Jh-T:/—AVuHh-T for all 7€ P,_(T)4, (£>1),
\ T T

where F& N 9T is the internal facet of T n; is a fixed unit normal to § that
points outward K if f C 9T N K. Note that, for £ = 0, the third equation of
(4.9) is not necessary.

Remark 4.1 (Generalizing existing techniques). The post-processing technique
presented in (4.9) generalizes the ones proposed in [15] and [17] to the case of
a multiscale method with a submesh. In fact, the techniques coincide in the
case & is a simplicial triangulation, and as submesh we only take one element
per each K, that is, 75 = {K} and H = H = h. In such a case, since there
is not a submesh, the second equation in (4.9) is no longer present.

By construction, we immediately obtain the following two results.

Proposition 4.1. The normal components of o, are continuous across the
inter-element boundaries, i.e., we have o, € H(div; ).
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Proof. It follows from the first equation in (4.9) and the definition (2.5) that,
for two elements K and K, if f C 9K NOT and §f C dK'NAT", for two adjacent
elements T', T" such that § = 0T N 0T, then

[[O'h : nf]] ’f = _)\H|T — )\H‘T/ =0.

On the other hand, if f € FE N AT, let p € Py(f), then, from the second
equation in (4.9) and the definition (2.5),

/f[[o'h'nf]]:u:_/f{AquhHT'nfu—'—/f{AquhHT"nfM:O'

Hence, [[a'h : 'nf]] |} = 0, which implies that the normal component is continuous
at the interelement boundaries, i.e., we have o, € H(div; (). O

The next result proves that the projection of the divergence of o, coincides
with the projection of f onto the finite element space of continuous, piecewise
polynomial functions in each K, relative to the submesh. The upshot is that
o, is locally mass conservative in each K € &. It extends the proof of [44] to
the MHM method which includes second-level submeshes.

Proposition 4.2. The recovered flur o, defined in (4.9) satisfies
/V-th:/fv for all ve VH(K) and > 0.
K K

Proof. First, assume ¢ > 1, and note that, for all v € V;¥(K), using integration
by parts and v|; € Py(f) for f C 9T,
/ oy My v] .
f

/V-ahv: Z /V-ahv: Z [—/a’h-VU—i-Z
K regk T TeZK r fcor

Since Vv|; € Py_1(T)%, we can use (4.9) to get

/V-a’hv: Z /AVuHh-Vv— //\Hv]
K TeTK T scornok V1
- Z /[[a-h'nf]]’fv'
feFENOT

From Proposition 4.1, [o, - n|; = 0, then, using (3.11), v = v, + v+, (3.8)-
(3.9) and (3.10),

V-o,v= /AVU -VU—/ A U
/K " Z T Hh oK "

TegK
= > /AV(?}LAHJrﬁf)'Vvl—/ )\HU:/ fu.
TegK T oK K
For the case ¢ = 0, we follow analogous steps, and get
[vo= 3 [V X% [onm=—[ =1
K TegK T TeZ K jcoT f oK K
which finishes the proof. 0

The next results shows the error estimate for V - o, in the L?*({2)—norm
assuming f € H1(2).

Theorem 4.1. Let ¢ > 0 and k > ¢+ d be the polynomial orders of the MHM
method (3.10). Assume that the exact solution of (2.1) satisfies f € Ht1(2).
Then the approzimated fluz o, € H(div; Q) defined in (4.9) satisfies

Vo —Tlg,(V-o,)le < Ch€+1|f|e+1,ﬂ/’ .
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Proof. Tt is not difficult to realize that Proposition 4.2 implies that IIg ,(V -
a,) =g, (V- o) =1, ,(f). Then, using standard finite element approxima-
tion results (e.g. [22, Corollary 19.8]) the following holds

V.o — HQ,@(V con)lloe =f - Hn,z(f)”o,ﬂ < Che+1|f|£+1,<@7
which finishes the proof. 0

Remark 4.2 (The one-element submesh case). In the case & is a simplicial
partition and the submesh contains only one element, i.e. 5 = {K} and
h = H, the reconstructed fluz o, € H(div;Q) defined in (4.9) satisfies V-0, =
Hk(f), for € >0, from Proposition 4.2. Hence, it follows

V-0 =V -o,loe < CHflure,

and we recover the result presented in [17].

The upcoming lemma holds significance about the error estimates for the
post-processed dual variable.

Lemma 4.1. Let p € Ay. Then

(4.10) [l < Clpella -

Proof. Note that, for y € Ay, there exists 7, € RT ,(2y) such that 7, -nf =
pon every F' € €. Thus, using a local trace and inverse inequalities (c.f. [22,
Lemma 12.8]), for a constant C' independent of H, h and H,

Iull2 = D HiellFw - n 1ok <C D I1Fulix < ClFuline < Cllulli,
Ke>» Kew

where we used the fact that n€ is the unit outward normal to K, (2.4), and
(2.3). O

The next result is an error estimate for the L?*(Q2)—norm of o,. To this
end, we assume from now on that A|, is a polynomial for all T € ZX and
K € &. This assumption is not restrictive, as the polynomial degree can be
chosen arbitrarily. However, in this case, the constants C' may depend on the
polynomial degree of A|, for all T € ZX.

Theorem 4.2. Let ¢ > 0 and k > ¢+ d be the polynomial orders of the MHM
method (3.10). Assume that the ezact solution of (2.1) satisfies u € H* (),
AVu € HYP2) N H(div;Q) . Then the approzimated fluz o, € H(div;Q)
defined in (4.9) satisfies

||0' — O'hHQQ S C (hk|u|k+1,9 + H”l\AVuuﬂ,g + he+1‘Avu|g+1,9) .

Moreover, assuming that f € H**1(22) and that there exist Cy, Cy, two positive
constants independent of mesh parameters such that C1th < H < Cyh where

Roin = min{hy , VT € ZF K € P},

min’

we have
|IV-o=V-o,loa<C (hk_1|u|k+1,3”+(He + hz)|AVU|£+1,9}+hk+1’f|k+1,ﬁ7’> :

Proof. The triangle inequality gives,

1/2 1/2
RT RT
o —oullon < {Z o — 7 ZU”(QJ,K} "’{Z |7 éU_UhH?),K} :

Kez Kez

[\ J/ [
-~ -~

(@) (i)
For (i), from (4.5), we have that

1/2
(4.11) { > llo - wﬁ’”ané,K} < Ch'* AV Ul 0.

Kez
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Now we need to estimate (ii). We shall apply now (4.8) to v, := (W?T o—
o)y € RT,(T). For all T € Z,5X and v, € RT,(T),

> vilBr < € > (M (0 +

TegK TegK
hr Z vy, - 'nf”g,f + Z vy, - nf||(2),f
FCOTNOK feFnaT
(4.12) =C Y ((a)+hr{() + (0)}) -
TegK

Let T € ZX, and let us bound (a). For 7 € P,_;(T)¢, using ¢ = —AVu
and the third equation in (4.9),

[ s r =[50 e m = [ AV, -0 7
T T T

Taking 7 = Il;, ,(v,,) and using the Cauchy-Schwarz inequality, we get

(@) = Mgy (0)l5.r < 1AV (ugy, — @)llor 1Tz ey (v ) [lor
which implies that
(4.13) 1MLy s (@p)llor < JAV (ugy, — w)llor -

Now we only need to find estimates for (b) and (c). For (c), let f € FE s.t.
f COT NOT'. For all i € Py(f), a fixed n;, using (4.9), (2.6) and properties of

RT,
T C, we get

RT,
/vh-nfu:/ﬂT ‘a'-nfu—i-/{AVuHh}-nf,u
f f f

1
= /W?TZU"n’fﬂ“—'—/_(Aquh|T+Aquh|T’)"n’f”
i f
= Z / AVuHh|T+7TT a) ;[
Tew;

Then, taking 1 = v, - n;, from the Cauchy-Schwarz inequality,

1 RT
(¢) = [lvy, - n3; < 5 D I AVuglr + 77 o) - ngllogllog - ngllog,
TEOJf

and, from Theorem A.2,

—-1/2

RT, RT,
1AV gl + 77 @) - mllog < € (hru = wgplir + 77 4o = @ lloar ) -

Summing up over all internal facets implies that,

(4.14)
_ RT,
S lwenlii=c YN (b= umfip + I e = ol o)
feF{noT fEFLNOT T" €wy

On the other hand, for (b), first note that AVu |, € H*(K) implies \ €
L*(0K) for all K € 2. Next, if f C 0T NIK, for all u € Py(f), from the first
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equation in (4.9) and the definition of II; ,(-), we get

> /f"’h'”f“: > /f(a'”f—‘fh‘"f)ﬂ

fCOTNOK fCOTNOK

= /BK(—)\ + Ag)p
_ /M(_HH(A) + Am.

Again, taking u = v, - n;, from the Cauchy-Schwarz inequality,

1/2
b= th-nfné,fs||ng,e<x>—AH||o,aK{ > llvh-nfllé,f} ,

fCOTNOK fCOTNOK

which implies that

1/2
(4.15) { > th%fHﬁ,f} < [He ¢ (A) = Amllo,oxc -

fCOTNOK

Then, applying (4.13)-(4.15) to (4.12) we obtain

> lwnldr <[ 0 (IAV (s = )l + hrllTe o3) = Anll o

TegK TegK

RT
Y S IAV— ug) g+ by e = o )]

fEFENOT 1" €wy
(4.16)

RT
<C 3 = wlir + hr(I0e o) = Aald o + Imp o = olRor) } -

TegK
Finally, adding over K € & and using (2.9) and (4.5), we get
lvallo.z < Cllu = wyllv + 1Tg o (A) = Al + AVl o

Now, we only need to find an estimate for |[II; ,(A) — Ag[l,. From Lemma 4.1
we have that

e o (A) = Anrlle < C e ,(A) = Arlla < € (Mg (A) = Alla + A = Anlla)

where we used the fact that Il ,(A) € Ay and Ay € Ay. Then, from Theorem
3.1 and global interpolation (c.f. [22, Section 19.3]),

A=Al < O(hk|u|k+1,,@ + H£+I|AVU|E+1,9) .

We then arrive that, the estimate for (i7) is,
(4.17)

1/2
RT,
{ Y lmg o - UhH%,K} < C (B*lulysr,e + (H™ + AV ) -

Ke>
From (i) and (i) we have

(418) ||0' — a'h”Q,Q S C (hk|u‘k+17@ -+ H€+1’Avu‘g+17{/}7 + he+1’Avu‘g+179) .
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Next, using the triangle inequality, an inverse inequality in each T, and
(4.17), we arrive at

1/2
IV-o=Vaula<yd, > IV-o-V-a5""al5;
KeZTegK
1/2
+4> D IVt =V gy
Ke? TegX

1/2

SO W o+ D Y hatllnf o — ol

Kez TeﬂhK

1/2
<C | B flrgro + H { Z Inx" ‘o — o, (2J,K}
Ke

<C (hk+1|f|k+1,y + W Nulpyr,2 + (H + he)|AVU|é+1ﬁ> )

which finishes the proof. U

5. A FULLY COMPUTABLE a posteriori ERROR BOUND

In this section, we propose and analyze a computable and efficient procedure
for a posteriori error estimation for the provided approximate solutions. To
analyze the a posteriori estimator we assume the following extra conditions.

Assumption B: The union 7, := |J ZX is a conforming triangulation of €.
Ke?

Assumption C: & consists of convex polytopes K.

Remark 5.1 (An alternative flux recovery). Assumption B allows us to modify
the flux recovery o, slightly. In fact, since the union of the local triangulations
TK defines a conforming triangulation in the whole domain, we can modify
the definition of o, in the following way: For ¢ < m < k, with k > { + d,
o, € RT,,(T) is defined as,
(5.1)

(

/(ah~nf),u:/—/\H,u for all p € P,(f), if f COKNIT,
f f

/f(o'h Ty = /f_{Aquh} "My for all p € Pp(f), if f € Fo* N AT,

/ o, T= / —AVuyy, - T for all T € Pp_(T)*, (m >1).
\ T T

This definition extends (4.9) allowing us to recover the fluz o, onto a higher-
order polynomial degree. Theorems 4.2 and 4.1 also apply, and we can, in
particular, prove

IV -0 =T, (V-o,)lloa < CP" | flai,z,

where C' > 0 s a constant independent of h.



AN H(div,Q)-CONFORMING FLUX RECONSTRUCTION FOR THE MHM METHOD 15

Now we introduce the Oswald interpolation operator Ipg : V¥ — VFNH}(Q)
39, 27] as follows: for ¢;, € V¥ and a Lagrange node V' € Q,

(5.2) Tos(gn)(V) = —= 3 @il (V).

where Z = {T" € 9, : V €T} and #F, denotes the cardinality of the

set 9‘\/ The Oswald operator is computationally efficient, requiring only local
averaging at shared Lagrange nodes. It smooths out flux jumps at element in-
terfaces, ensuring a stable and robust recovered potential in H'(£2) with respect
to mesh parameters. There are reconstruction alternatives that also ensure ro-
bustness with respect to the degree of the polynomial by post-processing the
primal variable on element patches (see, for example, [24, 14]).

With these ingredients, we present the main result on the a posteriori esti-
mator following the steps of [24, Theorem 3.3].

Theorem 5.1. Assume £ > 0, k > {+d and ¢ < m < k. Let u € H}(Q) be
the solution of (2.1), and uy, be the solution of the MHM method (3.10). Let
o, be the equilibrated fluz reconstruction defined through (5.1), and define the
local quantities

(5.3) Mk = AV ug, + oo,
(5.4) Mok = HA1/2V<uHh - [OS(uHh))HO,K )
and
Hy
(5.5 Mok = e, (V- 04) =V -y s

Then, the following upper bound holds

(5.6) ||A1/2V(U - UHh)H(Q),gz <= Z (771,K + ni:sc,K + 773,K>2 + Z US,K,
Ke® Ke®

where for any K € &, nfsc’K 15 the oscillation term defined by

H
(57) n({sc,K = TKHf - HKJTZ(f)”O,K .

In addition, assuming o == —AVu € H(div; Q)NH*(Q), s > 1/2, the following
local lower bounds hold

(5.8)

mrg <C | AY2V (u — ugp)llox + Mhox + H}(/2”H5,m()\> — Aulloar

1/2
i <4 S A2 (4 = )2
= min h; 0w ’
Feek jcr
1/2

HQ
M SO D0 TEIAV (= w35+ R [T, () = A1 o)
T

where 1y, i is the high-order term

RT m
(5.9) Mhoc = o =" " lo

and whk ={k € 28 : k C K or «kNK =F € Exg}. Moreover, if there
exist C' such that Hp < Chy and Hig < Chy for all F € 85, fe ffﬂ(‘?K,
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T € FK and K € 2, the following global lower bound holds
< C (1A (ugg, = W)l + T (V) = Al + D (i)’
n > Hh 0,2 Em H|lA Mho, K

KeZ
+ Z (nzsc,K)2> :

Kez

(5.10)

Remark 5.2 (High-order and oscillation terms). It is important to mention

that, since we allow m > (, then ny, - and nﬁsc’K are indeed high-order and
oscillation terms, respectively, for m > (.

Proof. Let s € H}(2) be the unique solution of

(5.11) (AVs,Vv) 5 = (AVuy,,Vv)» Yo e HY Q).

Then from the Pythagorean equality

(5.12) [|AV2V(u— uHh)H%Q = [|AY?V (u — 3)”3,@ + |AVAV (s — uHh)Hg,ﬂ .
Moreover,

(5.13) HAI/QV(S_uHhWOW_ min HA”QV( = ugp)|I6,5 -

It follows from (5.13) that, for w = I,4(uyy;,), we have the bound

(5.14) HA1/2V(3 - uHh)“(Q)M < ”Al/QV(uHh Ios(ugy) ||O/’ Z 772K
Keo

For the first term in (5.12), we note that u — s € H}(Q) . Thus, from the
definition of s € H}(Q) and the energy norm for a function in Hj (),

V- s = swp (AV(-5), Vi)
YEH(Q)
IVello,o=1

(5.15) = sup (AV(u—uy),Ve)s,
PEH ()
Vello,n=1

where we used that (5.11) implies (AV(s — uy,), Vp)z = 0. Let now ¢ €
Hy(Q) with [|¢lloq = 1 be fixed. Using the weak formulation (2.1), adding
and subtracting (o, Vy)z, o, € H(div;Q) defined in (5.1) and integration
by parts, we have

(5.16) (AV(u—up,),Vo)o =(f =V 0,9)» — (AVuy, +0,,V9)»
The Cauchy-Schwarz inequality gives

—(AVugy, +0,,Vp)s < Z AV Uy, + o llo kI Vello x
Ke

(5.17) = Z M lIVellox

Kez
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and from Proposition 4.2, the Poincaré inequality and Cauchy-Schwarz in-
equality,

(f=V- 0,0 = Z(f_HK,m(V‘O'h)aSO)K+(HK,m(V'Uh)_V'U'haSO)K

Ke>

= Z (f =g () — Pr)i

Ke>

+ Z Mg, (V-0,) =V -0,,0 Pk
Ke

H
< 3 Y~ (Dl Vel

Kez

H
£ 3 BN,V 0,) = V- oyl Tl

Ke>
(5.18) = Z ﬁgsc,KHvsoHo,K + Z N3,k Ve llo,x
Kez Ke>

where P = (9,1)/|K| and Iy, (-) is defined in (3.5). Combining (5.15)-
(5.18),

2

A2V (=) 3o < | sup > (g + 0lese + 1.0 1VOllo 4
PEH(Q) Kep
190l =1

(519) S Z (nl,K + ntj)csc,K + T]3,K>2 )
Ke>z

and, then, from (5.14) and (5.19) we obtain the reliability estimate (5.6).
Now, for the lower bound, from [40, Theorem 4.2] and for every F € EE
and f € FE N F, it follows that

1/2

K = ||A1/2V<UHh — Ios(ugy))llox < C Z Z hf_IH[[uHh]]”g,f
Feel jeFEnF
1/2

<O Y g Ml

Feck fCF

Let F € EX. Using uy € Ay given by uy = 1 in F and uy = 0 elsewhere,
in the first equation of the MHM method (3.10) we get ([uy,], 1) = 0. So,
applying [2, Theorem 10] we get

H;H[[UH}L]]H?),F <C HAUQV(U - uHh)”ng <C |]A1/2V(u — Ugy,) ;

HO,KUK’ )

where Wp = kp Ufkp, kp C K and &p C K’ with k, € 28 and &, € ZE . For
all K € &,

Hy
> m”ﬂumﬂﬂop <C > mmh ||A1/2V(U—UHh)||g,w§

Feel fCF Feek scF f
Therefore,

Mok = ||A1/2V(UHh — Tos(ugy))llo.x
1/2

Hp 1/2 2
<C Z i hf“A V(u-— UHh)Ho,w;;

Feek jcF
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Let us now bound 7; . Recalling that V- o = f in K, using the inverse
inequality in T' € Z5, (4.16), we get

H H
Ny i < 7KHHK,m(v o) = fllox + TK”f ~V-o,llox

H RT H RT
Sngsc,K‘f'TKHf_v'WK mUHo,K"”TKHV'WK "o =V oyl

1/2
f H%(h% RT, 2

S CT]OSC,K+C Z h2 ||V7TK m0-_v'0-hHO,T

TegK T

1/2

<SCnlex+C () H—%meﬂa — |2
— osc, h2 T hll0, T

TeTK r

) 1/2

nah> % [IAY2Y (= gy )| 3 + BT (V) = A2 o0}

TegK

To bound 7, s we notice that, since o = —AVu € H(div;Q) N H*(Q)?,
s > 1/2, then X\ € L?(£), so using the triangle inequality and (4.16) we get

M = 1AV ugy, + o llox
T T
< ||[AVuyy, + ook + o =75 "o llox + |7 "o — oyllox

< C AV (u — ug)llox + 1% 1 + Hi e (X) — Aar]

0,0K -

Finally, using the assumption about the mesh parameters and adding in K €
P, we get (5.10) which finishes the proof. O

Remark 5.3 (The one-element submesh case). When & is a simplicial tri-
angulation and F" = {K}, and h = H = H, then Il (V- 0,) =V -0,
Jor all K € & and £ < m < k, which implies that ny ;. disappears from the
aposterior estimator in (5.6). Also, the dependence of the lower bound for n,
on the ratio H/h in (5.8) does no appear.

Assumption C and the factor H/h in the efficiency estimates for n; ;- in (5.8)
appear as the price to pay for deriving a fully computable a posteriori error
estimator. Next remarks present an alternative estimator that does not require
Assumption C and has “cleaner” lower bounds, but is not fully computable.
It is important to note that the factor H/h in the lower bound for 7, x in (5.8)
is always present in multilevel discretizations, but differs from the factor H/h
in [40] involving the coarser scale H.

Remark 5.4 (Relaxing Assumption C). Assumption C allows us to have a
fully computable a posteriori error bound. However, if we do not take into
account this assumption, we can still have an a posteriori error bound, only
not fully computable. In the case where Assumption C' is not satisfied, i.e.,
K € & is not convex, (5.7) can be replaced by

(5.20) UZSC,K = CpHglf - HK,m(f)HO,K’

and Cp > 0 is a constant independent of K according to the Poincaré- Wirtinger
inequality, whose proof can be found in [43, Theorem 8.2].

Remark 5.5 (Avoiding factor H/h in (5.8)). The factor H/h in the efficiency
estimates for ng ;o states that, for a fully computable upper bound, we may not
use the approach where we fix H and make H,h — 0. If we accept not having a
fully computable upper bound, we recover the above said approach by replacing
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(5.5) by
(5.21)
1/2 1/2
N3 x ‘= Z 77?2,,T = Z h?ﬁ ||HT,m(v o,) =V Uh”g,T
TegK TegK

In fact, the estimate (5.6) can be rewritten as (see Appendiz A for details)

(5.22) HAl/ZV(U_UHh)Hg,L@ <Cny<C Z (nl,K+n£SC,K+n3,K)2+ Z 773,1@
Kez Kez

with an unknown constant C, where we used (5.20) and (5.21) instead of (5.7)

and (5.5). Following analogous steps used in Theorem 5.1, the lower bound for

the alternative 13 ;¢ in (5.21) reads

(5.23)

Mo < C (1429w = ) o s + i 10 (N) = Ml e + M)
which no longer depends on the factor H/h.

6. NUMERICAL RESULTS

This section verifies the theoretical aspects of this work. The following
numerical results are based on an implementation using FreeFem++ [32]. Since
one of the objectives is to validate the a posteriori error estimates, we build
o, using ¢ < m < k with £k > ¢+ d defined in (5.1) on conforming meshes.
The expected orders of convergence are given by Table 1.

Error estimates Order
||u_uHh||1,Q h* + H!
HO'_O'hHO,Q hE + H

IV -0~V oyl B+ H!
|V -o— HQ,m(V ' O'h)”o,Q hmH
TABLE 1. Error estimates order for / > 0, k > /(4 d and ¢ < m < k.

6.1. A smooth case with an analytical solution. The goal of this experi-
ment is to assess the theoretical results using a smooth analytical solution. We
consider A = Id, and the right-hand side and boundary conditions are chosen
such that

u(z,y) = sin(27x) sin(27y) ,
solves (2.1). Here we are using a conforming mesh where both global and local
meshes are based on triangles.

Unn

30e-14 1 2 3 4 5  63e+00

-1.0e+00 05 0 05 1.0e+00
— ' e ——— | o—

FIGURE 2. The solution wuy,;, (left) and the magnitude of o,
from the flux recovery strategy (right).
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Figure 2 shows the approximate solution, u,;, computed through the MHM
method (3.10) using ¢ = 0 and k£ = 2 and the magnitude of the approximate
flux o, built using the flux recovery strategy in (5.1) for m = 2.

The convergence results in the L?(2)—norm for the flux variable o, using
the solution of the MHM method with ¢ € {0,1} and k € {2, 3} in a conforming
mesh are depicted in Figure 3.

We observe a convergence which is consistent with the theoretical error
estimates. In fact, the theoretical results predict that the L?(Q)—mnorm for
the flux, as derived from the recovery strategy, exhibit a convergence rate of
O(H*). Furthermore, according to Remark 5.1, we can also see in Figure 3
that using ¢ < m < k for a conforming mesh, the projection of the divergence
of o, converges at rate O(h™*1).

error

. 5
\l\\ 5
—— |0 —ailon \‘:\3\.\ —— o —olon \‘\\'\\
-m- Voo ~Tgu(V - on)on -E- V-0~ Tga(V - on)on
vt — oY) \\‘\\\\\ S — o(H?) N
- o) RN - o) R

10! 10!
h h

FiGURE 3. The convergence on simplicial elements in the
L*(2)—norm for ¢ = 0 (left) and ¢ = 1(right) and o, with
m = 2. Hereh:% and k= { + 2.

Figure 4 shows a comparison between the divergence of the flux obtained
through simple post-processing of the primal variable, namely —AVu,,, and
the flux obtained from (5.1), with £ = 0, k = 2 and m = 2. It is interesting to
note that o, from our proposed strategy converges with the optimal order of
O(h™*1) in the L?(2)—norm while the other approach does not converge in
the broken semi-norm

IV-7lgz = > > IV-7lir  VreHdiv;Z).

Ke? 1egXK

error

e

IV +V-AVuy,llo.z, -
—m- Vo~ Toa(V - o)l RS
J— o Sse
N - o) \:‘\\\\I

h

FiGURE 4. The convergence on simplicial elements for the
L?(2)—norm for the divergence with £ = 0, k = 2 and m = 2.
Here h = %

The convergence results in the H (div; Q)-norm for the recovered flux variable
o, obtained using the MHM method with ¢ € {1,2}, k =3, and m =2 on a
conforming mesh, are shown in Figure 5. The results confirm the convergence
rate of order O(H?), as predicted by the theory.
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F1GURE 5. The convergence on simplicial elements for the
H(div; 2)—norm for the recovered flux with ¢ = 1 (left) and
¢ =2 (right). Here k =3, m =2 and h = %.

Now, regarding the a posterior: estimator defined in Section 5, Tables 2 and
3 report the error in the energy norm ||AY?V (u—uy, )|, », the global estimator
n given in Theorem 5.1 as well as the individual estimators 1, := ||[AVuy, +
Uh”o,% Mo = HAI/ZV(UHh_IOS(UHh))”o,% N3 = %HHQ,m(V'Uh)_V'GhHO,gzv
and the oscillation and high-order terms n/,. and nZ, for the MHM solution
with ¢ = {0, 1}, k = {2, 3}, and for the flux recovery strategy with m = 2. We
can observe that n/,. and 57 are indeed oscillation and high-order terms and
the estimator get tighter.

Tables 2 and 3 also reports the effectivity indices (overestimation factor)
defined as

Jeff .— n
[AY2V (= w0

and the corresponding orders of convergence in parentheses. As predicted by
theory, the estimator 7 is a strict upper bound on the discretization error. The
effectiveness indices (see Tables 2 and 3) also show robust behavior.

H Lk m | APV (u—ugy)llop U Tl 3 n({sc Mo n 117
0.353 0 2 2 1.860 0.149 2447 1.186  0.016 0.008 | 2.724 | 1.463
0.176 0.986 0.031 1.265 0.266  0.001 0.001 1.293 1311

: (0.91) (2.25)  (0.95) (2.15) (3.91)  (3.06) |(1.07)|"
0.088 0.501 0.007  0.641 0.064 6.77e-05 1.23e-04 | 0.644 1.987

: (0.97) (2.09)  (0.97) (2.00) (3.97)  (3.01) | (1.00) |
0.044 0.251 0.001  0.323 0.015 4.24e-06 1.54e-05| 0.323 1.985

: (0.99) (2.02)  (0.99) (2.01) (3.99)  (3.00) |(0.99) |
0.022 0.125 4.45e-04 0.162 0.003 2.65¢-07 1.92¢-06 | 0.162 1.987

: (0.99) (2.00)  (0.99) (2.00) (3.99)  (3.00) |(0.99) |

TABLE 2. Numerical validation of the a posteriori error estima-
tor n with £ =0 and k = 2. Hereh:%.

H Lk m | APV (u—uy) llo. T Up 3 Nse Mo n ey
0353 1 3 2 0.242 0.048 0.292 0430 0.016 0.008 | 0.522 | 2.152
0.176 0.060 0.012  0.074 0.094 0.001 0.001 0.120 1.977

: (1.99) (1.98) (1.97) (2.19) (3.91)  (3.06) | (2.11) |
0.088 0.015 0.003  0.018 0.022 6.77e-05 1.23e-04 | 0.029 1.923

: (1.99) (1.99)  (1.98) (2.06) (3.97)  (3.01) |(2.03) |
0.044 0.003 7.74e-04 0.004 0.005 4.24e-06 1.54e-05 | 0.007 1.907

: (1.99) (2.00)  (L.99) (2.02) (3.99)  (3.00) |(2.00)|"
0.022 9.57e-04 1.93e-04 0.001 0.001 2.65e-07 1.92¢-06 | 0.001 1.902

: (1.99) (2.00) (1.99) (2.00) (3.99)  (3.00) | (2.00) "

TABLE 3. Numerical validation of the a posteriori error estima-
tor n with £ =1 and k = 3. Hereh:%.
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In the particular case where h = H = H, we obtain that 7, in (5.5) vanishes,
since X = {K}, and efining the mesh, we find that the effectiveness indices
tends to approximately 1.09 for ¢ = 0 and 1.52 for £ = 1. By refining only
the submesh (from h = H/2 to h = H/8) and keeping H fixed, we observe an
increase in the effectiveness indices (from 1.52 to 2.42 for ¢ = 1, for example) as
predicted by the local lower bound in Theorem 5.1. The results show that the
estimates of Theorem 5.1 are accurate and the estimator shows competitive
performance, consistent with observations reported in the literature [34, 40,
27], despite the influence of the submesh on the effectiveness indices. To the
best of our knowledge, avoiding estimator dependence on subgrids remains an
open question in the literature.

6.2. SPE 10. We use Model 2 of the 10th Society of Petroleum Engineers
Comparative Solution Project (c.f. [16]) hereafter referred to as the SPE-10
model.

To validate our flux recovery strategy described in (5.1), we choose layer 36
as the object of our study and set the entry pressures as u = 1 (bottom) and
exit u = 0 (top). On the other two boundaries, we set homogeneous Neumann
conditions.

Since this benchmark does not have an analytical solution, we used a stan-
dard mixed formulation using Raviart-Thomas spaces of order 2 on a mesh
of 125.000 triangular elements and 1.314.000 degrees of freedom to obtain a
reference solution for this case.

Figure 6 shows that the magnitude of the discrete flux o, from the flux
recovery strategy in (5.1) with m = 2, approximates the canal better than the
current approximation done in the MHM method using —AVuy,,.

|lokn|l MHM space-based
7.0009 2etbe-5 25002
Il

i —

FIGURE 6. The reference solution (left). The dual variable ob-
tained from —AVu,, (middle) and from the flux recovery strat-
egy with m = 2 (right) using the MHM method with ¢ = 0 and
k=2.

We next test the performance of the a posteriori estimator defined in (5.6).
We start with a coarse initial mesh of 512 elements and 4 elements in the
submesh and build an adaptive algorithm based on the remeshing routine in
FreeFem++ (see [32, Section 5.1.9] for a complete description). In Figure 7
we depict a sequence of adapted meshes obtained with this strategy while in
Figure 8, the magnitude of o, is depicted in the first and last meshes along
with the reference solution. The last adapted mesh has 3.786 elements and
9.559 degrees of freedom.

Finally, in Figure 9 we depict a diagonal cross-section of uy, from (0,0)
to (1200, 2200) where we can observe the improvement induced by the use of
adaptive meshes.
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FIGURE 7. Sequence of adapted meshes induced by the a pos-
teriori estimator 7. Here ¢ = 0.
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FIGURE 8. Isolines of || obtained from the reference solution
(left) and from the MHM method using the initial mesh (middle)
and the adapted mesh (right).
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F1GURE 9. Comparison of the profile of the reference solution
and the MHM'’s solution u, obtained on the initial and final
adapt meshes. Here ¢ = 0.

7. CONCLUSIONS

In this work, we have introduced a localized post-processing strategy de-
signed to construct an approximate flux based on the solution derived from



24 G.R. BARRENECHEA, L. MARTINS, W.S. PEREIRA, AND F. VALENTIN

the MHM method. Also, as a by-product of the flux recovery strategy, we
introduced and analyzed an a posterior: error estimator.

The main contribution is regarding how we deal with the flux recovery when
we take into account face mesh partitions and second-level meshes in the MHM
method. This is exactly the scenario when the MHM method is used to ap-
proximate the solution of multiscale problems. We proposed a new cheap, local
system to post-process the dual variable and, following this, we conducted a
convergence analysis. We proved that this approximation achieves optimal
convergence orders of O(H**') in the L*(Q)—norm for o,. Additionally, we
proved that refining only the second-level mesh leads to optimal convergence
order of O(R**Y) (O(h™*1), £ < m < k and k > { + d, when considering a
conforming mesh) for the L?(Q)—norm of I, , (V - &,), which contrasts to
the conventional approach of using —AVu,;, in the MHM method, for which
optimal convergence does not occur.

Finally, we have proposed a fully computable a posteriori error estimator
using both the approximate solution u,;, and the approximate flux o, derived
from the flux recovery strategy. The a posteriori error estimate provides a
strict, fully computable, upper bound for the error u—u,,. Also, under appro-
priate regularity assumptions (linked to natural assumptions for the analysis
of the MHM method) it provides a lower bound for an enhanced norm of the
error. The possibility of removing the extra term from a posteriori estimates
of MHM methods remains an open problem.

APPENDIX A. TECHNICAL RESULTS

Let b; be the bubble function with support in w; € FE defined with respect
to the barycentric coordinates (see for instance [3, Section 2.3.1] for details.
For the sake of completeness, we line up the following theorem that summarizes
the main properties of these functions.

Theorem A.1. Let § € FE be a facet and let b; be the corresponding bub-
ble function. Then there exists a positive constant C' such that for all v €
P,(T),t > 0, the following holds

(A1) CHli2; < (bv, ) < Cllolf3; .
and
(A.2) he 25 vllor + kel *bs vl < Cllvllog

where the constant C' is independent of v and hrp.

We will define some notations in each subelement T € 7% and on each
subface f € Ff£ N T, particularly, regarding internal faces. They are the
following:

(A.3) Ry = (f+V - AVugy)|r VT € X,
and on f € F&E N AT,

(A.4) R; = (AVuHh\T + 7T7TQT20'> “n.

Theorem A.2. Let K € 2. For T € X the following holds
(A5) HRT”O,T § C’h;llu—uHhh,T.
Furthermore, for f € F& N AT we have that

— RT
(A6) Filos < C (W1 Rello + by u = walr + |77 o = @ loar) |

where C' 1s a positive constant independent of H and h.
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Proof. Let K € 2, T € X and § € FX N9T. We define f; := b;P(R;),
where F; : P(f) — Pr(ws) is an extension of functions defined on a face § to
the patch w; = T'UT". The proof of (A.5) follows identical steps to those from
[5, Theorem 4.3]

Let f € FE N OT, then

(R, B); = (AVuglp + 71 ‘o) - 1y, )

Using that S|,y ; = 0, integration by parts, (A.3), we get

((Aquh’T + W?TZO') "y, 5f)f = (V - ANV uyp, Bf)T + (AVUHh, VﬁQT
RT
+ (7 ‘o my, By)or
= (V- AVuyy, + f, B;)r + (AVuy,,, VB;)r
+ (V- AV, B)r + (77 ‘o - ny, By)or
= (R, B))r + (AV (ugy, — u), VB)r
+ ((AVu + W?Tﬁa') -y, Bi)or
= (Rr, /Bf)T + (AV(ugy), —u), Vﬁf)T

+ ((W?na — o) -n;, b — Bf)8T7

where Bf denotes the mean value of 5f on T, and in the last equation we

used the interpolation property of the operator W?Te. Therefore, using the

stability of the operator F;, the definition of f;, Cauchy-Schwarz inequality,
trace inequality (see [22, Remark 12.17]) and (A.2), we get

1Rsl3 < € (1RerllorlBllor + [u = sl rl e + hil*my ‘o = oloor|lir)
< O (1B locrhy® | Byllog + fu = wian.ohi | Blo
+limr o = ool Ryllos
=C <h1T/2 |Belloz + by *lu — umnlr + ||7p ‘o — U||0,8T> 1 Bslloy -

which finishes the proof.
O

We detail below the proof of (5.23), using the fact that the proof of estimate
(5.18) may be revisited in a different way. More precisely, we now present the
proof of (5.22).

Proof.

(f=V-0,0)2= Z(f—Hk,m(v‘ah)aSo)KJf(HK,m(V‘Uh)—V'UhaSD)K
Kew

= (a) +(0).
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For (a), we will consider (5.20), and then it holds
((l) - Z (f - HK,m(f)v 90)K

KeZ

- Z Z <f - HT,m(f)’ "2 HT,m(QO))T
Ke? TeﬂhK

<3 ST - T Hllozlle = T (@) llor
Ke>z Te?hK

1/2

<C Z Z h2THf—HT,m(f>Hg,T IVello x

KeZ Teth

<C Z ngsc,KHVSOHO,K :
KeZ

Following analogous steps, for (b) we have,

(b) = Z (HK,m(V 0,) = Vo, 0k

Ke®
=Y > Wpu(V-0,) = V-0p,0 =, (9)r
Ke? TegX
<C Z Z ||HT,m(v oy,) = V- o'hHO,THSO - HT,m(SO)”o,T
Ke? TegX

1/2

<C Z Z 77?2>,T IVellox

KeZ \ TegK

and the result follows. O
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